
AProf

AProf ii

COLLABORATORS

TITLE :

AProf

ACTION NAME DATE SIGNATURE

WRITTEN BY February 6, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AProf iii

Contents

1 AProf 1

1.1 AProf.guide . 1

1.2 AProf:What is a profiler . 1

1.3 AProf: System requirements . 2

1.4 AProf:Installation procedure . 2

1.5 AProf: Starting the profiler . 2

1.6 AProf:User interface . 3

1.7 AProf:Menu: Files . 3

1.8 AProf:Menu: Action . 4

1.9 AProf:Menu: Data . 4

1.10 AProf:Menu: Move . 4

1.11 AProf:Menu: Misc . 5

1.12 AProf: Profiler mode: Separate/Combined . 5

1.13 AProf: Cycle: Percentual/Millisecond timevalues . 6

1.14 AProf: XTime . 6

1.15 AProf: Configurability . 6

1.16 AProf: Notes . 6

1.17 AProf: Caveats . 7

1.18 AProf: StripB . 8

1.19 AProf: Tested systems . 9

1.20 AProf: Tested systems: Amiga E . 9

1.21 AProf: Tested systems: Aztec C . 9

1.22 AProf: Tested systems: SAS C . 10

1.23 AProf: Tested systems: Maxon C++ . 10

1.24 AProf: Tested systems: DICE C . 10

1.25 AProf: Tested systems: GNU C/C++ . 10

1.26 AProf: Tested systems: Assemblers . 11

1.27 AProf: Tested systems: Other... 11

1.28 AProf: Feedback . 12

1.29 AProf needs you... 12

AProf iv

1.30 AProf: Copyright . 13

1.31 AProf: Changes . 13

1.32 AProf: Question and Answer . 14

1.33 AProf: Preferences dialog . 14

1.34 AProf: Rexx example . 15

1.35 AProf: Exec dialog . 16

AProf 1 / 16

Chapter 1

AProf

1.1 AProf.guide

Documentation for Amiga Profiler V3.30
© 1993,94 Michael G. Binz

What is a profiler?

System requirements

Installation procedure

Starting the profiler

User interface

Configurability

Notes

Tested Systems

Caveats

StripB

Feedback

AProf needs you...

Copyright

Changes

Q+A

1.2 AProf:What is a profiler

AProf 2 / 16

A profiler is a development tool supporting the developer in code
optimization. A specified program is executed by the profiler
which collects several informations (ie. call counts, time values)
while execution. This data can be used to locate the so-called
hot spots in your code - functions where most of the execution time
is spent and optimization will gain most effect.

The following articles supply further information on profilers:

o Dr. Dobb’s Journal, January 1993
Joseph Newcomer, ’Profiling for Performance’, pp. 80

o Dr. Dobb’s Journal, November 1993
Michael R. Dunlavey, ’Performance Tuning: Slugging it out’, pp. 18

1.3 AProf: System requirements

o Hardware requirements

The profiler needs at least Workbench/Kickstart 2.04 and a minimum
of 500K available memory (depends on profilees sizes).

It has been tested successfully with Amiga 500, 2000, 3000, 4000
and OS versions 2.04, 2.1, 3.0.

o Software requirements

Your compiler must be able to create Amiga symbol hunks. Code
symbols included in this hunks should only address the starting
addresses of functions in your code. No intermediate jump
labels must be defined. (See @{ "Clean symbol tables" link frageantwort}, @{ " ←↩

Tested compilers" link l-systeme })

1.4 AProf:Installation procedure

Copy all files included in AProf3_30.lha into a directory and add
this directory to your PATH.

Do not delete AProf’s icon (AProf.info), since configuration data
is located in this file (See

Configurability
).

1.5 AProf: Starting the profiler

From CLI the profiler is started with

1.> AProf [application]

AProf 3 / 16

The profiler starts up, displays its user interface, loads the
symbol tables from the file ’application’ if specified and waits
for your actions.

From Workbench, doubleclick the AProf icon.

If no filename was specified or if started from workbench, you can
load a file from the menu @{ "[Files/Open]" link m-files }.

See also: @{ "User interface" link l-ui }

1.6 AProf:User interface

Title: Name of loaded profilee

Menus: @{ " Files " link m-files } @{ " Action " link m-action } @{ " Data " ←↩
link m-data } @{ " Move " link m-move } @{ " Misc " link m-misc }

Displays: @{ " Mode " link gad-inex } @{ " Time unit " link gad-percmil } @{ " ←↩
Sort " link gad-sort } @{ " Time " link gad-xtime }

Buttons: [Shortcuts for often needed menu entrys]

Description of table entrys:

Function HitCnt Per Call Over Min/Max
| | | | |
Symbol names* | | | |

| | | |
Call count** | | |

| | |
Average execution time per call | |

| |
Overall execution time for that function |

|
Minimum/maximum execution time per call

* The symbol *ENTRY*, if displayed, is generated by AProf if the symbol
table of the profilee contains no symbol sitting at the very first
executed address of its seglist.

** A call count value of -1 is shown for symbols being no function entrys.
Safe profiling must be active.

[Status and error messages are displayed in the bottom window border]

1.7 AProf:Menu: Files

Menu: Files
Reading and writing profiler data.

Open: Read a new file (also accessable via button)

AProf 4 / 16

Save: Save report to file with same basename and suffix .pro
Save as: Save report to selectable file
Reset: Reset all timing values
Print: Print report
Exit: Leave the program

1.8 AProf:Menu: Action

Menu: Action
Start the profiling process.

Start: Starts the profile run. If you restart a profilee, then times
are added.
If you want to run a profilee several times without adding the
times and hit counts, you must reset the timer and hitcounts
with @{ " Files/Reset " link m-files }.
(also accessable via button row)

1.9 AProf:Menu: Data

Menu: Data
Runtime configuration and execution control.

Exec details:
Provide a command line and stack size for the profilee
See: @{ "Exec dialog" link dialog-exec }

Preferences:
Configure the profiler.
See: @{ "Preferences dialog" link dialog-preferences }, @{ "Configurability" ←↩

link l-config }.

1.10 AProf:Menu: Move

Menu: Move
Moving in the display area.

Find: Enter a search string and start search
Find next: Search for next occurence
Top: Go to top of symbol table
Bottom: Go to bottom of symbol table
Page up/down: One page up/down

AProf 5 / 16

1.11 AProf:Menu: Misc

Menu: Misc
Other functions

Help:
Start the AmigaGuide(TM) hypertext help system (if available)

Refresh Window:
Redisplay symbol table

About:
Display version and copyright information

1.12 AProf: Profiler mode: Separate/Combined

Separate/Combined: (Mode)
Displays how function timing values are accumulated. If combined
is selected, the time value for a function includes the times of
all functions that are called by this function. Separate excludes
the times of called functions.

Note that if your code includes recursive procedure you must use
separate mode. If combined is used, the time for the recursive
procedure is wrong.

Example:

int main(void)
{

foo(2); /* foo needs 2secs execution time */

bar(3); /* bar needs 3secs execution time */

...burn 1sec proc. time in main()...

return 0;
}

If ’Separate’ is selected, the profile list will look like this:
Symbol HitCnt Per Call
main 1 1000 The timing values are updated for
foo 1 2000 each funktion separate.
bar 1 3000

Now if ’Combined’ is selected:
Symbol HitCnt Per Call
main 1 6000 The timing values for foo() and
foo 1 2000 bar() are added to main(), since
bar 1 3000 main() calls both.

AProf 6 / 16

1.13 AProf: Cycle: Percentual/Millisecond timevalues

Millisecond/Percentual time units: (Units)
Displays the units used for for timing values. If percentual is
active, times shown are fractions of overall execution time in
percent.

1.14 AProf: XTime

Overall execution time of profilee. Units are seconds or milli-
seconds depending on execution time. Times longer than 1000 ms are
displayed in seconds (s), below in milliseconds (ms).

1.15 AProf: Configurability

All configurable items of AProf must be set as ToolTypes in AProf’s
.info file, which must reside in the same directory as the profiler.

+--+
| Never delete AProf.info! All configuration data will be |
| written to this file! |
+--+

Beginning with version 3.30 one can save AProf’s current settings
with the ’Save’ button in ’Preferences’. It is recommended to use
this instead of setting the ToolTypes manually.

o WINDIM=left/top/width/height
Use this to set size and position for the profiler window.

o TUNITS=(PERCENTUAL | MILLISECOND)
Default time units.

o PMODE=(COMBINED|SEPARATE)
Profiling mode

o PATTERN=(AmigaPattern)
Amiga pattern for symbols to hide.
Look in your Amiga User Manual for a description of pattern syntax

o SORT=(NONE | NAME | HIT | AVERAGE | OVER)
Specify the sort order you prefer.

o SAFE=(TRUE | FALSE)
Safe profiling on or off

1.16 AProf: Notes

AProf 7 / 16

Implementation

AProf is an active profiler. This means, hit counts and timing values
are measured by employing a sophisticated breakpoint scheme.

Before a profilee is executed by AProf, all function entry points
are marked with breakpoints.

After execution is started, AProf receives the breakpoint hits and
places additional breakpoints at the function return points.

The address for function return points is derived from the stack. This
should make it clear why AProf needs a ’clean’ symbol table: There is
no foolproof way to figure out the function return address if there
are any function local data on top of stack.

Actually some testing can be undergone to ensure the correct values
are read from the stack. This can be activated in AProf versions
> 3.22 by the checkmark ’safe profiling’ in AProf preferences.
Although this is not foolproof as stated, it works unexpected good
with most compilers. The disadvatage of this technique is the
additional time spent in the checking routines.

Profilee environment

Wether AProf is started from CLI or workbench, the profilee’s
environment is always a shell. If started from wb, a shell window will
be supplied for profilee IO.

ARexx port

In the current version AProf provides no additional functions for
ARexx hosts.

1.17 AProf: Caveats

Here is a list of known constructs which can result in problems if
you try to profile programs including them

o Non-standard startup code

The profilees must be able to run in the same process environment
as the profiler. It’s not possible to use special startup codes for
detaching a program or making it resident.

o recursive procedures

Use only ’@{ "separate" link gad-inex }’ profiling mode if your code includes ←↩

recursive
procedures. In combined mode the time for the recursive procedure
is wrong.

AProf 8 / 16

o setjmp()/longjmp()

If setjmp()/longjmp() combinations are used in the profilee, the
time span between calling longjmp() and the next RTS instruction
will add to the function calling longjmp().

o signal()/raise()

Most compiler libraries contain signal()/raise() functions which
are not compatible with AProf.

o CIA Timer

CIA timers are not available for profilees.

o Overlays

Profiling of overlayed programs is not possible.

o Runtime limitation

Profiler timers can measure maximum time spans of about 99 mins.

o Static functions

Functions to be measured must be in the symbol table. This is not
the case for static (module local) functions in most programming
environments.

o Traphandlers

If your program uses a private trap handler, traps not handled must
be propagated to the previous handler. Used traps must be allocated
with AllocTrap().
Profiling is NOT possible if you are using trace traps (#9).

o Switch- and Launchfunctions

Profilees using members tc_Switch and tc_Launch in Exec’s Task
structure must propagate execution to previous defined handlers.

1.18 AProf: StripB

StripB is a command line utility which can be used to remove all
HUNK_SYMBOL- and HUNK_DEBUG-hunks from an Amiga executable.

AProf 9 / 16

Command line: StripB infile outfile

1.19 AProf: Tested systems

This is a list of systems I have tested the profiler with. If you
find an error or if you have tested a system not included here,
send a message please.

@{ " Amiga E " link amiga-e }
@{ " Aztec C " link manx-c }
@{ " DICE C " link dice-c }
@{ " GNU C/C++ " link gnu-cpp}
@{ " SAS C 6.3 " link sas-c }
@{ " Maxon C++ V1.2.1 " link maxon-cpp }
@{ " Assemblers " link assemblers }

@{ " Other systems... " link other }

1.20 AProf: Tested systems: Amiga E

AProf works with all versions of Amiga E >2.1b.

Problems:
Profiling of programs using exeptions leads to meaningless results

Creation of symbol hunks:
Use -s switch

1.21 AProf: Tested systems: Aztec C

Manx Aztec C V3.4 - V5.2b

Creation of symbol hunks:
Use option -w for the linker

Problems:

o Remove symbols named ’_H#[0-9]_org’

o Don’t use detach.o with programs you want to profile.

o ANSI C functions signal() and raise() don’t handle traps
the way they should. (see

Caveats
, custom trap-handlers)

AProf 10 / 16

1.22 AProf: Tested systems: SAS C

SAS C ?

1.23 AProf: Tested systems: Maxon C++

Maxon C++ V1.2.1

Problems:
Code and data symbols in link libraries reside in the same hunk. According
to Jens Gelhar this will change in future versions of the library. The
beta version of the updated compiler writes symbol hunks as needed by Aprof
so the library problem requires a simple recompile.

Compiler is adding labels named L’num’ to symbol table. This must be
removed (Pattern: L#[0-9]) or you must activate ’save profiling’.

Creation of symbol hunks:
For command line compiler use option -bs.
In the integrated environment use menu ’Compiler options’.

Other:
Test the procedure rexx/maxoncpp.aprof for unmangling of c++ symbol names.

1.24 AProf: Tested systems: DICE C

DICE C V2.06.21 unregistered version

Problems:
Dice generates dirty symbol tables, activate ’Safe profiling’.

Creation of symbol hunks:
Use option -s for DCC.

Information about the commercial DICE system welcome.

1.25 AProf: Tested systems: GNU C/C++

GNU gcc - 2.3.3

Problems:
Profiling programs using ixemul.library is not possible, use static linking.
Activate ’Safe profiling’.

Creation of symbol hunks:
Always created, to not create them use -s or @{ " StripB " link l-stripb }, ←↩

which is
included in this AProf distribution.

AProf 11 / 16

1.26 AProf: Tested systems: Assemblers

AProf is tested with a number of assemblers (Aztec as, asm68, DevPack).
There seem to be no problems as long as the following rules are obeyed:

o If you export code symbols other than function labels, activate
’Safe profiling’ in [Data/Prefs].

o Don’t be too creative with your control flow, eg. several starting
points for functions etc. Although this will not crash AProf, the
results provided will be a bit random :)

o Do not mix data and code in one hunk.

o Do not use self modifying code.

1.27 AProf: Tested systems: Other...

Here is a little strategy to test if your system is able to cooperate
with AProf.

Step 0.

First, try to find out if your system can generate executables with
Amiga symbol hunks. You should find this information in your compiler
documentation.

Then after successfully creating a executable version of the program
to test, first check if your program is at least stable enough to run
stand-alone without crashing the machine.

Close all applications so that if a crash happens no data is lost!

Step 1.

Start AProf and load your program. Then specify in [Data/Prefs] the
symbol pattern ’#?’ (without quotation marks). This removes the complete
symbol table, which results in a reduced protocol between AProf and
your program.

When this is done, close your eyes and start your program (if you
have problems in finding the right keys you can keep your eyes open).
If your machine crashed, then Aprof is definitely incompatible with
this programming system. The only thing to do is to reboot your machine
an delete AProf. If there was no problems and your program is running,
take all steps needed to stop your program.

Step 2.

Next step is to remove all symbols but one, which should be generated by
you. If your programm contains a function ’foo’ written by you then
open the prefs request and insert ~(foo) as symbol pattern. After selecting
’use’, this should be the only symbol displayed (it is possible, that
there is an second symbol called *ENTRY* - this is used by AProf, ignore

AProf 12 / 16

it).

Start execution. If everything works, then again stop your program or
wait for termination. Now Aprof should display the function timings.

A crash is a sign for incompatibility. Forget AProf.

Step 3.

Now remove the pattern in [Data/Prefs] and activate ’Save profiling’.
Then take a look at the symbol list. Remove temporary labels or
line number labels.

Examples:
_L0001, _L0002, _L0003, _L0004, ...
_H0_org, _H0_end, _H1_org, _H1_end, ...
@0001, @0002, @0003, ...

Then again start execution of your program. If everything works as it
should you did it. Exit your program and AProf will generate the
timing report. AProf seems to be compatible with your programming
system. Save the pattern created in the preceding step and use it
in future profiling sessions.

If your program crashed, the hard work begins. As we saw in Step 2,
your programming system basically should work with AProf. So there
must be one or several data objects in your code hunks. You will
have to find and remove them.

Step 4.

Save all settings.

1.28 AProf: Feedback

Contact me under

EMail: michab@informatik.fh-augsburg.de

If it’s not possible to use EMail, write to:

Michael Binz
Bahnhofstr. 11
D-86459 Gessertshausen

If you made tests with a compiler not listed in ’systems’, please
send me a small demo source file, the translated executable (with
symbol hunk) and some information about creating symbol hunks with
your compiler. If needed, send a description of problems and actions
you performed to solve them, too.

1.29 AProf needs you...

AProf 13 / 16

... if you have access to an Amiga with MMU!

Since I’m developing AProf on an Amiga 2000 with 68000 I can’t check
for ENFORCER HITS! Although much care was taken to keep this nasty
sort of bugs out of my code, there must be some. Anywhere.

So man, read the following!

if (found_enforcer_hit())
{
if (have_access_to_email())

Send_Micha_An_Email_Report(); /* Really! */

else if (!too_lazy())

Send_Micha_SnailMail_Report(); /* Cool... */

else

GuruForever(); /* Gnah... */
}

@{ " Micha’s address? " link l-feedback }

1.30 AProf: Copyright

This software is freeware. You are allowed to copy, distribute and
use it, as long as you don’t change the software and distribute only
the packed file (AProf3_30.lha).

You are not allowed to charge a fee higher than Fred Fish’s for copy-
ing and distributing.

These files and their related documentation, utilities and examples
are provided "AS-IS" and subject to change without notice; no warran-
ties are made. All use is at your own risk. No liability or respon-
sibility is assumed.

This software, the included utilities and documentation are
© 1993-94 Michael G. Binz

1.31 AProf: Changes

V 3.34
Bugs fixed:
o Screen updates caused enforcer hits
o Shell display of command line caused enforcer hit

Changes:
o Console window opened when started from WB now has close gadget

AProf 14 / 16

o XTime display uses [s] if [ms] value exceeds 1000

V 3.30
Future:
o Passive (interrupt controlled) profiling mode

Known Problems:
o AmigaGuide needs ’topaz’ or maybe another fixed width font

to be the system default font. If another font is used,
AmigaGuide fails silently.

Changes:
o If run from WB the profiler acts as shell for profilees
o System default font is used
o Added sorting functions
o Extended configurability
o Maximum command line length is now 256 chars
o Special ’safe’ profiling mode added
o ARexx Port for custom symbol name unmangling

Bugs fixed:
o Use of other fonts than topaz.8 trashed window
o Catched some enforcer hits
o Initial window size was wrong
o Syntax error in a pattern led to an endless loop

V 3.20
o First released

1.32 AProf: Question and Answer

o What is an ’clean’ symbol table?

Clean symbol tables include only function entry addresses. Neither
intermediate labels are defined nor data symbols in code hunks.

1.33 AProf: Preferences dialog

APROF: PREFERENCES DIALOG @{ " Exit help " close }

Symbol pattern:
Provide a regular expression for symbols you want to exclude from
profiling. For a description of Amiga regular expressions see
your dos manual.
Patterns can be used to remove compiler generated intermediate
labels or functions you aren’t interested in. One advantage of
removing functions from the symbol table is faster profiling.

Example: ’L#[0-9]’ removes symbols starting with an ’L’ followed

AProf 15 / 16

by any number of digits (L1 L00 L4711).

Separate/Combined: (Mode)
Specifies how function timing values are accumulated. If combined
is selected, the time value for a function includes the times of
all functions that are called by this function. Separate excludes
the times of called functions.

Note that if your code includes recursive procedure you must use
separate mode. If combined is used, the time for the recursive
procedure is wrong.

See @{ "example" link gad-inex }.

Millisecond/Percentual time units: (Units)
Selects the units used for for timing values. If percentual is
active, times shown are fractions of overall execution time in
percent.

Safe profiling:
If safe profiling is on (selected), then while profiling, every
breakpoint must pass additional tests to ensure that it belongs
to a function entry or exit (See @{ "dirty symbol tables" link frageantwort }).
If off, this tests are not done, resulting in faster profiling.
Since it is hard to notice the time spent in doing the tests, it
is recommended to activate safe profiling.

Rexx Unmangler:
Specifiy the filename of the Rexx procedure to be used for name
unmangling.
Some programming languages (eg. C++) offer ’type-safe linking’,
which is often implemented by coding the argument types into the
symbol names (this process is called symbol mangling). Since for
humans this symbol names are then hard to read, it is possible
to specify a Rexx procedure for translating the symbol back in
a more readable form.

See @{ "example Rexx unmangler" link rexxample }.

Sort order:
Specify the preferred sort order.

1.34 AProf: Rexx example

/* Dummy C Unmangler

*
* This demonstrates the basics for AProf unmanglers written in Rexx

*
* Don’t use this in real life, since this is included in AProf

* as standard unmangler (No mangler selected in preferences)

AProf 16 / 16

*
* This unmangler removes a leading ’_’, if one exists

*/

/* Get the symbol name from AProf and put it in ’symnam’ */
parse arg symnam

/* Check if there is a leading ’_’ */
if "_" = left(symnam, 1) then

/* Remove first char */
symnam = right(symnam, length(symnam) -1)

/* Return result */
exit symnam

1.35 AProf: Exec dialog

APROF: EXEC DIALOG @{ " Exit help " close }

Command line:
A command line for the profilee can be specified. The command
name must not be given.

Example: You have written a program named ’foo’, which needs one
argument ’bar’ to be specified on the command line. The following
steps are needed to get an execution profile of ’foo’:

o Start AProf: aprof foo
o Select ’Data...’ and insert ’bar’ as command line
o Select ’Use’
o Select ’Start’

Stack size:
Provide a stack size for the profilee.

	AProf
	AProf.guide
	AProf:What is a profiler
	AProf: System requirements
	AProf:Installation procedure
	AProf: Starting the profiler
	AProf:User interface
	AProf:Menu: Files
	AProf:Menu: Action
	AProf:Menu: Data
	AProf:Menu: Move
	AProf:Menu: Misc
	AProf: Profiler mode: Separate/Combined
	AProf: Cycle: Percentual/Millisecond timevalues
	AProf: XTime
	AProf: Configurability
	AProf: Notes
	AProf: Caveats
	AProf: StripB
	AProf: Tested systems
	AProf: Tested systems: Amiga E
	AProf: Tested systems: Aztec C
	AProf: Tested systems: SAS C
	AProf: Tested systems: Maxon C++
	AProf: Tested systems: DICE C
	AProf: Tested systems: GNU C/C++
	AProf: Tested systems: Assemblers
	AProf: Tested systems: Other...
	AProf: Feedback
	AProf needs you...
	AProf: Copyright
	AProf: Changes
	AProf: Question and Answer
	AProf: Preferences dialog
	AProf: Rexx example
	AProf: Exec dialog

